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2. Introduction, part two

� Optimization hierarchy

� Available solvers in JuMP

� Writing modular code

� Geometrical intuition
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Optimization hierarchy

Models: LP, QP, SOCP, SDP,
MIP, IP, MINLP, NLP,...

Algorithms: gradient descent,
simplex, interior point method,
quasi-Newton methods,...

Solvers: CPLEX, Mosek, Gurobi,
ECOS, Clp, Knitro, Ipopt,...

Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Optimization models can be
categorized based on:

� types of variables

� types of constraints

� type of objective

Example: every linear
program (LP) has:

� continuous variables

� linear constraints

� a linear objective

We will learn about many
other types of models.
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Optimization hierarchy

Models: LP, QP, SOCP, SDP,
MIP, IP, MINLP, NLP,...

Algorithms: gradient descent,
simplex, interior point method,
quasi-Newton methods,...

Solvers: CPLEX, Mosek, Gurobi,
ECOS, Clp, Knitro, Ipopt,...

Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Numerical (usually iterative)
procedures that can solve
instances of optimization
models. More specialized
algorithms are usually faster.
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Optimization hierarchy

Models: LP, QP, SOCP, SDP,
MIP, IP, MINLP, NLP,...

Algorithms: gradient descent,
simplex, interior point method,
quasi-Newton methods,...

Solvers: CPLEX, Mosek, Gurobi,
ECOS, Clp, Knitro, Ipopt,...

Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Solvers are implementations
of algorithms. Sometimes
they can be quite clever!

� typically implemented in
C/C++ or Fortran

� may use sophisticated
error-checking, complex
heuristics etc.

Availability varies:

� some are open-source

� some are commercial

� some have .edu versions
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Optimization hierarchy

Models: LP, QP, SOCP, SDP,
MIP, IP, MINLP, NLP,...

Algorithms: gradient descent,
simplex, interior point method,
quasi-Newton methods,...

Solvers: CPLEX, Mosek, Gurobi,
ECOS, Clp, Knitro, Ipopt,...

Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Modeling languages provide
a way to interface with
many different solvers using
a common language.

� Can be a self-contained
language (GAMS, AMPL)

� Some are implemented in
other languages (JuMP
in Julia, CVX in Matlab)

Again, availability varies:

� some are open-source

� some are commercial

� some have .edu versions
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Solvers in JuMP

Source: http://www.juliaopt.org/JuMP.jl/0.18/installation.html 2-6
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Solvers in JuMP

Before solving a model, you must specify a solver.
You can do this when you declare the model:

using JuMP, Clp, ECOS, SCS

m = Model(solver = ClpSolver())

m = Model(solver = ECOSSolver())

m = Model(solver = SCSSolver())

You can also declare a blank model and specify the solver later.

m = Model()

setsolver(m, ClpSolver())

solve(m)

setsolver(m, ECOSSolver())

solve(m)
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Solvers in JuMP

Before using a solver, you must include the appropriate
package: using JuMP, Clp

Every solver must be installed before it can be used:
Pkg.add("Clp")

Some things to know:

� Installing a package may take a couple minutes, but it only
has to be done once.

� The first time you use a package after you install or update
it, Julia will precompile it. This will take an extra 5–30 sec.

� Keep all your packages up-to-date using Pkg.update()
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Solvers in JuMP

Top Brass.ipynb

� Try Clp, ECOS, SCS solvers. Is the answer the same?

� Compare solvers using the @time(...) macro

� What happens if an unsuitable solver is used?
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Speed vs Generality
We will see later in the class that these models are nested:

LP ⊆ SOCP ⊆ SDP

SCS (an SDP solver) is relatively slow at solving LPs because
it solves them by first converting them to an SDP!
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Writing modular code

It is good practice to separate the data from the model.

Top Brass 2.ipynb , Top Brass 3.ipynb

� Use dictionaries to make the code more modular

� Use expressions to make the code more readable

� Use NamedArrays for indexing over sets

� Try adding a new type of trophy!
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Comparison: GAMS (1)
* TOP BRASS PROBLEM

set I/football, soccer/;

free variable profit "total profit";

positive variables x(I) "trophies";

* DATA section

parameters

profit(I) / "football" 12 , "soccer" 9 /

wood(I) / "football" 4 , "soccer" 2 /

plaques(I) / "football" 1 , "soccer" 1 /;

scalar

quant_plaques /1750/

quant_wood /4800/

quant_football /1000/

quant_soccer /1500/;

* MODEL section

equations

obj "max total profit"

foot "bound on the number of brass footballs used"

socc "bound on the number of brass soccer balls used",

plaq "bound on the number of plaques to be used",

wdeq "bound on the amount of wood to be used";

JuMP and GAMS are
structurally very similar
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Comparison: GAMS (2)

* CONSTRAINTS

obj..

total_profit =e= sum(I, profit(I)*x(I));

foot..

I("football") =l= quant_football;

socc..

I("soccer") =l= quant_soccer;

plaq..

sum(I,plaques(I)*x(I)) =l= quant_plaques;

wdeq..

sum(I,wood(I)*x(I)) =l= quant_wood;

model topbrass /all/;

* SOLVE

solve topbrass using lp maximizing profit;

JuMP and GAMS are
structurally very similar
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Geometry of Top Brass

0 500 1,000 1,500
0

500

1,000

1,500

2,000

2,500

feasible set

footballs (f )

so
cc

er
ba

lls
(s

)

max
f , s

12f + 9s

s.t. 4f + 2s ≤ 4800

f + s ≤ 1750

0 ≤ f ≤ 1000

0 ≤ s ≤ 1500

Each point (f , s) is
a possible decision.
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Geometry of Top Brass
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Which feasible point
has the max profit?

p = 12f + 9s
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