CS/ECE/ISyE 524 Introduction to Optimization Spring 2017-18

2. Introduction, part two
e Optimization hierarchy
e Available solvers in JuMP
e Writing modular code

o Geometrical intuition

Laurent Lessard (www.laurentlessard.com)


www.laurentlessard.com

Optimization hierarchy

Models: LP, QP, SOCP, SDP,
MIP, IP, MINLP, NLP,...

VN VY

Algorithms: gradient descent,
simplex, interior point method,
quasi-Newton methods,...

VAVAVAVALY,

Solvers: CPLEX, Mosek, Gurobi,
ECOS, Clp, Knitro, lpopt,...

VAV,

Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Optimization models can be
categorized based on:

e types of variables
e types of constraints
e type of objective

Example: every linear
program (LP) has:

e continuous variables
e linear constraints

e a linear objective

We will learn about many
other types of models.

2-2



Optimization hierarchy

Models: LP, QP, SOCP, SDP,
MIP, IP, MINLP, NLP,...

IVAVAVARVALY;

Algorithms: gradient descent,
simplex, interior point method,
quasi-Newton methods,...

VAVAVAVALY,

Solvers: CPLEX, Mosek, Gurobi,
ECOS, Clp, Knitro, lpopt,...

VAV,

Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Numerical (usually iterative)
procedures that can solve
instances of optimization
models. More specialized
algorithms are usually faster.

generality

generic

specialized

~
~ .o
-~

2-3



Optimization hierarchy

Models: LP, QP, SOCP, SDP,
MIP, IP, MINLP, NLP,...

VN VY

Algorithms: gradient descent,
simplex, interior point method,
quasi-Newton methods,...

IVAVAVAVAY,

Solvers: CPLEX, Mosek, Gurobi,

ECOS, Clp, Knitro, lpopt,...

VAV,

Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Solvers are implementations
of algorithms. Sometimes
they can be quite clever!

e typically implemented in
C/C++ or Fortran

e may use sophisticated
error-checking, complex
heuristics etc.

Availability varies:
® some are open-source
® some are commercial

e some have .edu versions

2.4



Optimization hierarchy

Models: LP, QP, SOCP, SDP,
MIP, IP, MINLP, NLP,...

VN VY

Algorithms: gradient descent,
simplex, interior point method,
quasi-Newton methods,...

VAVAVAVALY,

Solvers: CPLEX, Mosek, Gurobi,
ECOS, Clp, Knitro, lpopt,...

VAV,

Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Modeling languages provide
a way to interface with
many different solvers using
a common language.

e Can be a self-contained
language (GAMS, AMPL)

e Some are implemented in
other languages (JuMP
in Julia, CVX in Matlab)

Again, availability varies:
® some are open-source
® some are commercial
e some have .edu versions

2-5



Solvers in JuMP

Solver Julia Package solvers License LP SOCP MILP NLP MINLP SDP

Artelys Knitro KNITRQ,jl Knitrosolver(}) Comm. X X

BARON BARON.JI garonsolver() Comm. X X
AmpINLWriterjl gonminMLsolver() *

Bonmin EPL X X X X
CoinOptServices.jl osilsonminsolver()

Cbc Chbe.jl ChcSolver() EPL X

Clp Clpjl Clpsolver() EPL X
AmpINLWriterjl CouennelLSolver() *

Couenne ERIS X X X X
CoinOptServices.jl 0silCouennes 0

CPLEX CPLEX.jl cplexsolver() Comm. X X X

ECOS ECOS,jl olver() GPL X X

FICO Xpress Xpress.jl ver() Comm. X X X

GLPK GLPKMath... GLPKSOLVEr[LP|MIP]() GPL X X

Gurobi Gurobi.jl Gurobisolver() Comm. X X X

|popt Ipopt.jl IpoptSolver() EPL X X

MOSEK Mosek.jl MesekSolver() Comm. X X X X X

NLopt NLopt.jl HLoptsolver() LGPL X

SCS SCS.jl scssolver() MIT X X X

Source: http://www.juliaopt.org/JuMP.jl/0.18 /installation.html


http://www.juliaopt.org/JuMP.jl/0.18/installation.html

Solvers in JuMP

Before solving a model, you must specify a solver.
You can do this when you declare the model:

using JuMP, Clp, ECOS, SCS

m = Model(solver = ClpSolver())
m = Model(solver = EC0SSolver())
m = Model(solver = SCSSolver())

You can also declare a blank model and specify the solver later.

m = Model()

setsolver (m, ClpSolver())
solve(m)

setsolver (m, ECOSSolver())
solve(m)

2-7



Solvers in JuMP

Before using a solver, you must include the appropriate
package: using JuMP, Clp

Every solver must be installed before it can be used:
Pkg.add("Clp")

Some things to know:

e [nstalling a package may take a couple minutes, but it only
has to be done once.

e The first time you use a package after you install or update
it, Julia will precompile it. This will take an extra 5-30 sec.

e Keep all your packages up-to-date using Pkg.update ()

2-8



Solvers in JuMP

Top Brass.ipynb

e Try Clp, ECOS, SCS solvers. Is the answer the same?
e Compare solvers using the @time(...) macro

e What happens if an unsuitable solver is used?

2-9


http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Top Brass.ipynb

Speed vs Generality

We will see later in the class that these models are nested:

LP C SOCP C SDP

SCS (an SDP solver) is relatively slow at solving LPs because
it solves them by first converting them to an SDP!

L
gn '

e

— )

S " SCS

5 ECOS
o] ~

a0 & Seel Clp
s TTTee-l
o4 >
& slow fast

speed



Writing modular code

It is good practice to separate the data from the model.

Top Brass 2.ipynb , Top Brass 3.ipynb

Use dictionaries to make the code more modular

Use expressions to make the code more readable

Use NamedArrays for indexing over sets

Try adding a new type of trophy!


http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Top Brass 2.ipynb
http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Top Brass 3.ipynb

Comparison: GAMS (1)

* TOP BRASS PROBLEM
set I/football, soccer/;

free variable profit "total profit";
positive variables x(I) "trophies";

* DATA

section

parameters
profit(I)

scalar

wood (I)

plaques(I)

quant_plaques

quant_wood
quant_football /1000/
/1500/;

quant_soccer

* MODEL section

equations
"max total profit"

obj

foot
socc
plag
wdeq

"bound on
"bound on
"bound on
"bound on

the
the
the
the

/ "football" 12 , "soccer" 9 /
/ "football" 4 , "soccer" 2 /
/ "football" 1 , "soccer" 1 /;

/1750/

/4800/

number
number
number
amount

of brass footballs used"

of brass soccer balls used",
of plaques to be used",

of wood to be used";




Comparison: GAMS (2)

* CONSTRAINTS
obj..
total_profit =e= sum(I, profit(I)*x(I));

foot..
I("football") =1= quant_football;

socc. .
I("soccer") =1= quant_soccer;

plaqg..
sum(I,plaques(I)*x(I)) =1= quant_plaques;

wdeq. .
sum(I,wood(I)*x(I)) =1= quant_wood;

model topbrass /all/;

* SOLVE
solve topbrass using lp maximizing profit;




Geometry of Top Brass

soccer balls (s)

A

2,500 ¢

2,000

1,500

A

N

1,000

500 1

feasible set

N

0 500 1,000

footballs (f)

1,500

Y

n;ax 12f +9s

s.t. 4f 4 2s <4800
f 4+ s <1750
0 < f <1000
0 <s <1500

Each point (f,s) is
a possible decision.



Geometry of Top Brass

soccer balls (s)

A
1,500

N\

(650, 1100)

250 500 750
footballs (f)

n;ax 12f +9s

s.t. 4f 4+ 25 <4800
f+s <1750
0 < f <1000
0 <s <1500

Which feasible point
has the max profit?

p=12f +9s



	Introduction, part two
	Optimization hierarchy
	Available solvers in JuMP
	Writing modular code
	Geometrical intuition


